Purchasing a cardiac CT scanner: What the radiologist needs to know

Maria Lewis

ImPACT St George's Hospital, London maria.lewis@stgeorges.nhs.uk

CT scanner development

Which scanner?

Top-of-the range CT scanners

Philips Brilliance iCT

Toshiba Aquilion ONE

Improved performance with 'difficult' patients?Siemens Definition FlashGE Discovery CT750 HD

What do you need on a cardiac scanner?

 High temporal resolution to 'freeze' cardiac motion

 Good 3-D spatial resolution to image narrow, tortuous arteries

 Fast volume coverage to minimise breathing and misregistration artefacts

• High dose efficiency for low dose scans

Conventional CCTA scan modes

Irradiation

Helical

UKRC 2010

- constant mA
- mA modulated Max-----

• Axial (Step and Shoot)

- single phase

Reconstruction

Cardiac CT: technical requirements (CCTA)

- Temporal resolution
- Spatial resolution
- Volume coverage
- Dose
- Other considerations

Cardiac CT: technical requirements (CCTA)

- Temporal resolution
- Spatial resolution
- Volume coverage
- Dose
- Other considerations

Temporal resolution

- To 'freeze' cardiac motion need short 'imaging window'
 - time within one cardiac cycle over which data is acquired for image reconstruction
- Ideally imaging window < 15% R-R
 - at 60 bpm ~150 ms
 - higher heart rates shorter times needed

Temporal resolution

- Reconstruct images in most stationary phase of cardiac cycle
 - best phase dependant on heart rate

UKRC 2010

nhase

How to improve temporal resolution

- Fast rotation times
 - currently 270 350 ms
 - 360° reconstruction not suitable

• Half-scan reconstruction method – temporal resolution (TR) $\cong \frac{1}{2}$ rotation time $60 \text{ bpm}_{\text{R}-\text{R}}$ ~ 150 ms 150 ms 150 ms 150 ms 150 ms150 ms

How to improve temporal resolution

- Multi-segment reconstruction
 - uses multiple heart beats for image reconstruction
 - 2 segments: max TR ~ $^{1/4}$ rotation time
 - 3 segments: max TR ~ $^{1/6}$ rotation timeetc
- Temporal resolution achieved dependent on heart rate
 - can be optimised by adjusting rotation time

How to improve temporal resolution

- Dual-source technology
 - two 90° segments acquired simultaneously in single heart beat
 - Temporal resolution $\cong \frac{1}{4}$ rotation time
 - heart rate independent
 - high temporal resolution allows more flexibility in reconstruction phase

Tube B

Temporal resolution

			Temporal resolution (ms)	
Scanner model	Tubes (#)	Rotation (ms)	Axial	Helical
GE Discovery CT750 HD	1	350	175	44 - 175
Philips Brilliance iCT	1	270	135	34 - 135
Siemens Definition Flash	2	285	75	38 - 75
Toshiba Aquilion ONE	1	350	35 - 175	35 - 175

Cardiac CT: technical requirements

- Temporal resolution
- Spatial resolution
- Volume coverage
- Dose
- Other considerations

Spatial resolution

• Ability to discern small, high contrast structures

Isotropic spatial resolution required
 – equal resolution in all planes

Voxel size: x=y=z

Spatial resolution

- Spatial resolution dependent on
 - focal spot and detector size
 - sampling density
- Also dependent on
 - reconstruction parameters e.g. reconstruction filter
 - temporal resolution

How to improve spatial resolution

- Flying (dynamic) focal spot (FFS)
 - improves sampling density
 - reduces artefacts

	FFS availability		
Manufacturer*	x-y plane	z-axis	
GE	Yes	No	
Philips	Yes	Yes	
Siemens	Yes	Yes	
Toshiba	No	No	

* Not available on all scanner models

x-y plane

How to improve spatial resolution

• Double slice reconstruction – volume axial mode

How to improve spatial resolution

• Double slice reconstruction – volume axial mode

Spatial resolution

- Limiting spatial resolution:
 - up to 15 25 lp/cm (0.3 0.2 mm) in scan plane
 - up to ~13 lp/cm (0.4 mm) in z-axis

- Sharpest reconstruction filters result in high noise
- Generally for standard cardiac scans

 x-y plane resolution ~ 8 lp/cm (0.6 mm)
 z-axis resolution ~ 13 lp/cm (0.4 mm)
- For reduced 'blooming' e.g. stents, calcium
 sharper filters may be used ~ 10 lp/cm (0.5 mm)

UKRC 2010

Images from Lin, EC et al; http://emedicine.medscape.com/article/1603072-overview

Cardiac CT: technical requirements

- Temporal resolution
- Spatial resolution
- Volume coverage
- Dose
- Other considerations

 Aim to cover heart within a breath-hold and with a minimum number of heart beats

- Ideally, single heart beat
 - less chance of arrhythmia & breathing artefacts

• z-axis detector configuration of top-of-the-range CT scanners

- Consider detector length NOT 'no. of slices'
- Number of heart beats required to cover volume depends on
 - detector length
 - scan mode

No. of heart beats required: 140 mm length, single segment

	C	Detector length (m	m)
Scan mode	40	80	160
Axial (step and shoot)	7	3	1
Helical – low pitch	4	2	-
Helical – high pitch	1	-	-

Volume coverage – 'single beat'

• Single heart beat coverage can be achieved in two ways:

Volume coverage – 'single beat'

- Full organ coverage
 - cardiac scanning: triggered axial mode, no table movement

- Single beat, single rotation
 standard CCTA
- Single beat, multiple rotations

 increased flexibility
- Single beat, modulated
 CCTA + functional
- Multi-beat, pulsed
 CCTA, multi-segment
- Multi-beat, continuous
 perfusion

Irradiation

- Wide detector coverage
 - cone beam artefact: 3D reconstruction method
 - scatter: software corrections
 - roof-top effect: software corrections available on some systems

• Reduced roof-top effect – Toshiba Aquilion ONE

Version 4.51

Version 4.61

Volume coverage – 'single beat'

- High pitch helical (Siemens 'Flash' mode)
 - prospectively triggered helical mode
 - couch speed ~ 135 mm per rotation
 - cardiac volume acquired within single heartbeat

- High pitch helical
 - limited to lower heart rates (<65 bpm)
 - images acquired at range of R-R phases (but high temp res)
 - scatter from two tubes: reference detector corrections
 - helical artefacts?

Cardiac CT: technical requirements

- Temporal resolution
- Spatial resolution
- Volume coverage
- Image noise
- Dose
- Other considerations

- Dose primarily dependent on:
 - scan mode
 - scan protocol
 - dose reduction features

- Choice of scan mode and protocol dependent on patient
 - heart rate
 - heart rate variability
 - patient size

 Scan mode Helical

Axial

Variation of dose with scan mode: Siemens Definition Flash**

Helical – low pitch scan – no ECG modulation : 10 mSv

Scan mode	Effective dose (mSv)					
Maximum mA window	Narrow (Single phase)		Wide (40% phase range)		nge)	
Dose outside max mA window	0	4%*	25%	0	4%*	25%
Axial (step and shoot)	1.2			4.8		
Helical – low pitch		1.7	3.4		5.6	6.4
Helical – high pitch (Flash mode)	0.8					

* Siemens MinDose

**Doses obtained using Siemens' Cardiac Dose Calculator (Accuracy ±10%) Assuming: 60 bpm, BMI 25; 0.014 mSv/DLP Scan parameters: 100 kV, 160 mAs/rot/tube, 140 mm scan length Scanner software version VA 34

 Selection of appropriate mA and kV

 automatic selection of mA may be available

Use of small FOV bow-tie filter
 reduces peripheral dose

- Use of iterative reconstruction
 - less noise at same dose
 - ~ 50% dose reduction for same image quality claimed

From Silva et al AJR Jan 2010

UKRC 2010

All manufacturers offer iterative reconstruction

Manufacturer	Iterative reconstruction
GE	Adaptive Statistical Image Reconstruction (ASIR)
Philips	iDOSE
Siemens	Iterative Reconstruction in Image Space (IRIS)
Toshiba	Adaptive Iterative Dose Reduction (AIDR)

 Second generation iterative reconstruction methods currently in development
 e.g. GE: Model-based Iterative Reconstruction (Veo) Siemens: Sinogram Affirmative Iterative Reconstruction (SAFIRE)

- Optimisation of scan length: Dose increase ~10% per cm¹
 - 'adaptive collimation' for wide beam axial scans
 - 'dynamic collimation' to reduce overranging in helical scans

- Partial irradiation to reduce surface organ dose
 - breast dose reduction up to $40\%^2$

¹ With a base scan length of 10 cm

² Kalender W. et al. Reduction of dose to the female breast in thoracic CT; European Society of Radiology 2008; 18: 1674-1682

Cardiac CT: technical requirements

- Temporal resolution
- Spatial resolution
- Volume coverage
- Image noise
- Dose
- Other considerations

Other considerations

- User-friendliness
 - automated scan parameter optimisation
 - applications software / post-processing
- Additional features
 - dual energy for *e.g.* myocardial perfusion, direct bone removal, virtual non-contrast, plaque differentiation....

Other considerations

• Dual energy approaches

Manufacturer	Dual energy method
Siemens	Dual source technology
GE	Rapid kV switching with 'flying-focal spot'
Philips	Dual-layer detector

Philips dual-layer detector

Conclusions

- Cardiac CT scans benefit particularly from a high temporal and spatial resolution as well as fast volume coverage
- Cardiac doses depend largely on scan mode choice of mode is mainly patient determined
- Optimal parameters and dose saving features should be used
- Manufacturers have moved in different directions in scanner development
- The 'best' scanner is dependent on local needs

 dedicated cardiac, dedicated A&E, general purpose scanner...
- ...and also £££££

Market review

Market review: Advanced CT scanners for coronary angiography CEP10043, March 2010 www.dh.gov.uk/cep www.impactscan.org

Market review

Advanced CT scanners for coronary angiography

CEP10043

March 2010

Informing procurement - Encouraging innovation