The impact of MDCT on optimisation and quality assurance of CT scanners

S. Edyvean

Imaging Performance Assessment of CT Scanners St. Georges Hospital www.impactscan.org

Multi-Slice CT

- Image quality and capability increasing
- 2006

Dose

MDCT optimisation and quality assurance

- Multi-slice CT
- Implications for testing
- Optimisation of protocols

CT Radiation Dose

- CT is inherently a high dose examination, and increasing
- ~50% of total contribution to doses from diagnostic x-ray
- ~10% of number of x-ray exams ¹

Multi-Slice CT

- Helical scanning one acquisition
 All channels acquire data (4,16, 64 slice scanner)
 Each image uses data from many detectors
 - Reconstruct many images from one scan
 - Reconstruct many images from one
 Reconstruct other thicknesses
 - Most scanning done helically

Hulti-Slice CT • Automatic exposure control • Varying attenuation of, along, and around patients • Tube current automatically adjusted to achieve a standard noise level From patient to patient Along patient length Around the patient Image: Along patient length Around the patient Image: Along patient length Around the patient Image: Along patient length Around the patient

Multi-Slice CT

- Automatic exposure control
 - Varying attenuation of, along, and around patients
 - Tube current automatically adjusted to achieve a standard noise level
 - Scanners do all or some

CT scanner technical quality • Quality control part of overall testing process • Many of the tests are the same Purchase Acceptance Quality control

References and resources

- American College of Radiology www.acr.org
 CT Accreditation program (Med. Phys, 31 (9) September 2004)
- <text>

Issues in multi-slice CT testing

- Wider irradiated beam

 Is the test object long enough ?

 Many slices acquired simultaneously

 Should I measure all the axial slices ?
 Can I deal with all the images ?

 Thinner slices
- Initial sides
 Is the test object good enough ?
- Automatic exposure control – What should I do ?
- Mainly helical protocols

CT scanner tests

- Image quality
 - image noise
 - imaged slice thickness
 - spatial resolution
- Dose
 - CTDI (in air, in phantom)
- AEC

Image noise water filled phantom noise image Image noise noise image Image noise Image noise

Axial or helical scan

• Noise = standard deviation (σ) of CT number in roi

roi ~ 40% of phantom diameter for repeatable results

Phantom long enough to accommodate all slices Don't forget scatter 120 ---

Is the test object long enough ?

Impact (30 \rightarrow 120 mm)

Catphan (20 \rightarrow 40 mm)

Manufacturer's phantom

Should I measure all the axial slices ?

- For equal noise in each slice need

 Equal sensitivity of detectors
 Equal dose to detectors
- On four slice scanners, outer slices ~ 5% higher

Noise measurements in multi-slice • Measure all or some of the slices • John State St

Image slice thickness - axial

Some use wire, at 25, 30, or 45 °

Multi-slice imaged slice width - axial

• Measure all or some of the slices

Is my test object good enough ?

- Measurement of slice widths of < 1mm

 not possible where thickness of plate is < or = image width
- ImPACT use two phantoms

 0.5 mm aluminium, 30° (slices 2 20 mm)
 0.05 mm titanium, 8° (slices 0.5 4 mm)

Multi-slice imaged slice width - axial

- Shallow angle gives more pixels in projection in image
- More plates extend phantom in z-direction

Imaged slice width - helical

- High contrast bead or disc
- Same test for single and multi-slice

MSCT - Scan plane spatial resolution

- Same test for single and multi-slice
- Use for both axial and helical images
- Only need measure for one axial image
- Factors affecting scan plane spatial resolution are in the scan plane, and do not change from slice to slice

Dose

- Computed tomography dose index (CTDI)
- Measured with 100 mm ion chamber
 - In air for quality control
 - In phantom for acceptance, dose reference levels

CTDI on multi-slice scanners

• Use total nominal beam width (n.T)

Testing the AEC

- Circular, elliptical phantoms of various sizes
- Scan short lengths over each section
- Monitor mA, CTDI_{vol}, image noise

Which scan protocols ?				
	Noise	Image width	Scan plane resolution	Dose
mA				
kV				
Focal spot selection				
Scan time			^	
Nominal image width				
Beam width	*			
Detector group size				
Convolution kernel				
Pitch	~~	M		w
Interpolation algorithm				
^ If scan time affects no. samples, ^{∧∧} In some circumstances , * In almost all cases				

Which scan protocols ?

- Time constraints of quality control Use typically used protocolsMany are helical, axial gives good basic data
- Rotate through to ensure all modes are looked at

Testing of multi-slice scanners

Large amount of data

- Think through the testing carefully
- Can you handle the data you are generating ?
- Do you need to consider an automated process ?

Data analysis

<text><list-item>

MDCT optimisation and quality assurance

- Multi-slice CT
- Implications for testing
- Optimisation of protocols

Optimisation of scan protocols

- Beam width
- Image slice width
- Automatic exposure control (AEC)
- Required image noise?

Beam width

- Penumbra typically 3 mm for all beam widths – lower proportion of total dose with larger beam widths
- Wider is generally better

Automatic exposure control

- Most systems allow users to set a required noise level

 An image noise index
- Specifying a reference image with acceptable image quality
- Maximum and minimum mA sometimes specified

Automatic exposure control

Additional benefit

- Reduction of artefacts with rotational AEC
- Low photon count in lateral projections gives streak artefacts

Scan with constant mA

Nov 06 Siemens CARE

CHARA P

Scan with real-time dose modulation

171 mAs

den Hospital London

What do AECs give us?

- Lower patient doses than before?
 - Possibly, but not necessarily
 - It is possible to use AEC and give higher dose
 'dose can go up as well as down'
- More consistent image quality? – Yes
- The optimum image quality? – If they are used well
- What is the required image noise?

MDCT optimisation and quality assurance

- Multi-slice CT
- Implications for testing
- Optimisation of protocols

The ImPACT of MDCT on optimisation and quality assurance of CT scanners

S. Edyvean

Imaging Performance Assessment of CT Scanners St. Georges Hospital www.impactscan.org

ImPACT