A Visual Method for Demonstrating the Relative Performance of Cone Beam Reconstruction

D Platten¹, C McCollough², N Keat¹, S Edyvean¹

ImPACT, St George's Hospital, London, UK, www.impactscan.org
Dept of Radiology, Mayo Clinic, Rochester, USA

Background and problems

- 16-slice CT scanners introduced at RSNA `02
- Increased number of simultaneous slices leads to more pronounced cone-beam artefacts
- Manufacturers implemented cone-beam reconstruction techniques to combat artefacts in helical scanning
- What improvements do these new reconstruction techniques make?

Aim

- Aim was to accentuate the cone-beam artefacts
- A thin-walled object with edges at an angle to the scan plane will achieve this
- Rate of change of funnel shape is constant along the z-axis
- Scanned in air, the funnel has high contrast (~ 500 HU)

Example images

- Scan the funnel using a helical protocol
- Single slices through the funnel appear as rings
- MIP image of many slices results in a wider ring
- If perfect the images should be uniform

MIP image

Reconstruction increment

- Reconstructing contiguous slices leads to discontinuities in the MIP images
- Reconstructing overlapping slices reduces this effect
- Images reconstructed every half a slice-width

Reconstruction increment

- Reconstructing contiguous slices leads to discontinuities in the MIP images
- Reconstructing overlapping slices reduces this effect
- Images reconstructed every half a slice-width

Every 1/2 slice width

Reconstruction increment

- Reconstructing contiguous slices leads to discontinuities in the MIP images
- Reconstructing overlapping slices reduces this effect
- Images reconstructed every half a slice-width

Every 1/10 slice width

• Low pitch (0.5), Siemens Sensation 16

• High pitch (1.5), Siemens Sensation 16

Impact @ RSNA 2003

• High pitch (1.5), Philips Mx8000 IDT

Cone-beam (COBRA)

Standard

• High pitch (1.5), Toshiba Aquilion 16

Cone-beam (TCOT)

Cone-beam algorithm with pitch

• GE LightSpeed 16, cone-beam reconstruction always on

Clinical relevance

Standard Cone-beam

Inclined (60°) Teflon rod

• High pitch (1.5), Siemens Sensation 16

130 mm off-centre, Standard 130 mm off-centre, Cone-beam (AMPR)

Impact @ RSNA 2003

Conclusions

 Scanning a funnel or rod provides a visual method to assess the effectiveness of cone-beam reconstruction algorithms at reducing artefacts

Images show clear improvements relative to standard reconstruction techniques

• There is potential for objective analysis of these results, such as plotting CT number profiles along the funnel radius