Automated dose control in multi-slice CT

Nicholas Keat Formerly ImPACT, St George's Hospital, London

Introduction to presentation

- CT contributes ~50+ % of all medical radiation dose
- Ideally all patients would receive 'just enough' radiation to produce a diagnostic image
 - Extra radiation provides no clinical benefit, but extra dose
- Controlling exposure usually achieved with 'standard' protocols
 - These usually err on the side of over-exposure
- Automatic exposure controls (AECs) introduced on CT scanners to address these issues

X-ray exposure

- X-ray film needs correct exposure to get the best image
- Phototimers used since ~1940 to set x-ray exposure time

AEC systems in CT

- CT uses digital detectors, not easily under or over-exposed
- Over-exposure leads to better image quality!
 - Under-exposure gives noisy or streaky images
- Manufacturers have introduced CT AEC systems in last three years
- CT has caught up with general x-ray, 60 years after introduction of the phototimer
 - In CT, tube current, not exposure time is being controlled

CT scanner exposure pattern

CT scanner exposure is highly localised
 – Good opportunity for AEC optimisation

Variable patient attenuation

- Attenuation of x-rays varies according to patient density and thickness
 - Each patient is a different size
 - Cross sectional diameters change along patient length
 - Bones highly attenuating, lungs low attenuation
- Signal to detectors varies inversely to attenuation

CT AEC principles

- mA adjusted to compensate for attenuation differences
 - dose applied to patient only where needed
 - image quality less variable

Patient attenuation

- Assessed from SPR (plan) view, or from feedback from previous rotations
- Tube current adjusted accordingly

Advantages of AEC

- More constant level of x-ray signal to detectors
 - Avoids under- and over-exposing detectors
- Image quality is kept at a constant level
 - From patient to patient, and during single study
- Tube heat capacity is conserved
 - Avoids tube cooling delays
- Reduction in 'photon starvation' streak artefact
 - Caused by under exposure of detectors
- Dose optimisation becomes easier
 - CT scan setup is based on image quality, not tube current

Dose and image quality

- Dose and image quality are opposite sides of the same coin
 Good image quality 'costs' x-ray exposure
- AEC systems operate by varying tube current (mA)
 - Patient dose proportional to mA
 - Image noise proportional to $1/\sqrt{mA}$
- AECs are generally operated by specifying image noise characteristics
- Specifying patient protocols using image noise levels has implications for patient dose

Present AEC systems

• AEC systems available on multi-slice systems are applied at one or more levels:

	Patient size AEC	Z-axis AEC	mA r ulation	
GE	Auto mA		SmartmA*	
Philips	DoseRight ACS	DoseRight ZDOM	DoseRight DOM	
Siemens	CAREDose 4D			
Toshiba	SUREExposure		**	

*GE LightSpeed Pro scanners only ** Work in progress

Methods to set AEC exposure level

 Different methods exist to define the exposure level using AEC systems

Manufacturer	Method for setting exposure level	
GE	'Noise Index' sets required image noise level	
Philips	A 'Reference Image' is used, which has the desired level of image noise.*	
Siemens	'Equivalent mA' set for standard sized patient	
Toshiba	Set required standard deviation (noise)	

* new method based on reference mAs forthcoming

ImPACT cone phantom

- Conical Perspex phantom with elliptical cross section
- Based on 'Apollo' phantom developed by Muramatsu, National Cancer Centre, Tokyo

Cone phantom

• Images along length of phantom (AEC off)

Cone phantom

Coronal view

Sagittal view

Scan protocol

- Standard conditions:
 - 120 kV, approx 200 mA, 1 s or less rotation time,
 - wide collimation e.g. 20 mm, 5 mm slice, 45 cm reconstruction field of view
- Scan along phantom with AEC off and on
 - If possible select different features of AEC separately
- Change exposure level increase desired standard deviation or reference mA
- Look at effect of different kVs
- Change helical pitch and direction of tube movement
- Store DICOM images on CD

Image analysis

- mA information retrieved from DICOM files
- Standard deviation (SD) and average CT number calculated at centre and edge of image using automatic analysis tool
 Status: Finished Result file: f\images\results\aec.csv
- Region of Interest (ROI) size 2000 mm²
- Results analysed using Excel

🚺 Noise Analysis			
Status:Finished			
Result file: f:\images\results\aec.c	sv	Change	File
Ē			
Ser Ima kV mA Time	Thk Filter	CT Num	St Dev
0002 050 120 440 1620	5.0 STANDARD	113.65	3.28 🔺

Results from testing

- Aims of each AEC system are slightly different, so it is difficult to compare results
- In general, all systems successfully achieved their aims
- Following slides show a selection of the results, much more data has been gathered

Results: GE - axial

Results: GE - axial

Results: GE - helical

 Noise index 12, different helical pitch, table movement in and out of gantry

Results: Toshiba

• Data from RealEC on Aquilion 16

Results: Philips

• Mx8000 IDT has patient size AEC, and mA modulation

3 scans planned, at different z-axis positions, patient AEC off 3 scans, patient AEC on

Results: Siemens

- System does not aim to keep noise constant
 - Smaller patients may need better quality images
- Three 'strengths' of AEC

Know your AEC!

- Each AEC responds differently to changes in scan and recon parameters
 - Important to know how your system will react!

Manufacturer	Tube voltage	Rotation time	Helical pitch	Image thickness	Recon kernel
GE	\checkmark	\checkmark	\checkmark	\checkmark	
Philips	\checkmark	\checkmark	\checkmark	\checkmark	
Siemens		\checkmark	\checkmark		
Toshiba	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

What is the is optimum AEC setting?

- Depends on the application
 - One body part may require different IQ levels depending upon clinical requirements
- How do we find this out?
 - Critical evaluation of image quality, feedback
 - Simulation studies
- Responsibility for manufacturer to develop good default protocol settings

What IQ or dose is needed?

Scanned dose: 1

Simulated dose: 0.075

UKRC 2006

Images courtesy Y. Muramatsu, NCC Tokyo

What do AECs give us?

- Lower patient doses than before?
 - Possibly, but this is by no means a foregone conclusion
 - It is possible to use AEC and give higher dose than previously
 - Keep monitoring CTDI_{vol} and DLP expect larger variations
- More consistent image quality?
 - Yes...
- The optimum image quality?
 - If they are used well

Conclusions

- AEC systems offer potential benefits for everyone
 - Radiologists: image quality consistent from patient to patient
 - Radiographers: consistent IQ for different sizes is now simple
 - Patients: potential for dose reduction, repeat exams less likely
 - Physicists: protocol optimisation is easier
- Users need to understand the systems
 - How does mA vary when changing slice thickness or kernel?
- The current systems work as intended, but there is opportunity for manufacturers to improve them further
 - Optimisation of scan protocols with AEC
 - A common method for defining image quality would be useful
 - Potential for AEC to control scan times and kV too

ImPACT AEC report: www.impactscan.org/bluecover.htm

Challenges for manufacturers and users

- Optimisation of scan protocols
 - Work required to ensure that radiologists are getting good image quality, and patient doses are under control
- Standardisation of method to set exposure/IQ
 - A single method would aid comparison of scan protocols from many scanners or scanning centres
- Education of users
 - AEC users need to know the details of their system, how it differs from others