Physics & Technology of Multi-slice CT

James Weston ImPACT

Aims

- Some key factors about MSCT
 - construction of scanners
 - reconstruction techniques
 - artefacts
 - other factors
- Concepts and ideas

 keep it non-mathematical!

MSCT scanners

Dual slice

- 1991
- 1998 Four slice
- 2002 16 slice
- 2003 32 slice
- today
 - 64 sub-mm slices
 - 0.4 s rotation

Clinical scanners

 Image quality and capability increasing

The 3 Fs of CT

• Faster

• Further

UKRC 2007

Ref Scan 1 Ref TP 194.0

Isotropic imaging

- 2D pixel in a CT image represents a 3D voxel
- Resolution is ideal when equal in all 3 dimensions
 - best results with slice thickness equal to (axial) pixel size
 - routine 0.5 1 mm slice thickness achieves this goal

Scanner design

What's under the covers ?

"Third generation" CT scanners

- Tube & detectors
 - rotate around patient gathering x-ray projections
- Projection data used to form slice images
 - filtered back projection

Helical CT

- Continuous gantry rotation + continuous table feed
- Scan data traces a helical path or 'spiral' around patient
 - data used to form axial images

Multi-slice CT scanning

xy-plane

images

- Many features in common with single slice (SSCT)
 - multiple parallel detector banks along z-axis
 - enables a number of projections to be acquired simultaneously

MSCT scanning: in scale

Detector banks

- Array extends in 2 directions
 - xy-plane
 - arc to collect many samples for each projection
 - z-axis
 - along the patient length
- SSCT
 - z-axis coverage: one element

• MSCT

- many z-axis elements

11

Slices & detectors

- Just 4 detectors reduces
 options for scanning
- Narrow coverage
 - eg. 5 mm
 for d=1.25 mm

Slice width selection: 4 slice

Slice options: real example

- GE LightSpeed
 - 4 slices
 - 16 detectors in z-axis

Slice options: real example

- GE LightSpeed
 - 4 slices

- 16 detectors
- Detector output combined to define data acquisition width
- Coverage up to 20 mm

Adaptive arrays

Detector elements not all same size
 – e.g. Toshiba Aquillion series

More "thinnest-slice" coverage

UKRC 2007

Detector mock-ups courtesy of Toshiba

64 slice scanners

64-Slice CT: double sampling

- z-flying focal spot
- 32 detectors -> 64 data channels

? CT

- Multi-slice CT
- Multi-detector CT
- Multi-channel CT
- Multi-row CT

MSCT MDCT MCCT (MRCT less common as abbreviation)

- All effectively the same thing
- Note: care when using "SSCT"
 - normally used for single slice
 - can sometimes refer to single source
 - check the context

Design considerations

- Scan gantry
 - mechanical stresses
 - data & power feed
- Tubes
 - high currents
 - narrow slices; fast rotations
 - tube cooling
 - generator response
- Detectors
 - responsive
 - efficient
 - small
- Electronics / computers / reconstruction hardware

More challenges for MSCT

- Reconstruction
- Artefacts
- Dose efficiency
- Data management

Using helical data

• Single slice: interpolate using 2 nearest data points

Using helical data

- Single slice: interpolate using 2 nearest data points
- Up to 8 slice MSCT: use all data within a variable 'filter width' for interpolation

Filter width

Flexibility of reconstruction

- 'Overlapping' reconstructions
 - better z-axis resolution
 - better 3D imaging

MPR of skull from 5mm slices

Artefacts

- All standard (SS) CT artefacts can still occur
 - ring artefact
 - beam hardening
- Specific issues for MSCT
 - cone beam
 - helical artefacts

Cone beam artefacts

- Seen as streaks in image as number of slices increases
- Due to large cone angles and narrow slices

Courtesy: Siemens

Cone beam

- As number of slices increases, beam is more diverging, outer slices are distorted
- Negligible up to 8 slices, significant for 16 slice scanners

Cone beam artefact

- Beyond 8 slices, special reconstructions needed to avoid cone beam artefacts
- Range of techniques are used
 - tilted (hyperplane, or non-orthogonal)
 - 3D (Feldkamp / FDK) reconstructions

courtesy GE

Tilted reconstruction

- ASSR techniques uses tilted reconstructions
 - images back projected along optimal oblique planes
 - reconstructed images then filtered to produce axial images

3D reconstruction

- Feldkamp based three dimensional reconstructions
 - extension of back projection to third dimension
 - requires more computing power

Effectiveness of cone beam algorithms

16-slice acquisition

standard reconstruction

cone beam reconstruction

Courtesy: Siemens

Helical artefacts

• Arise from variation in sampling along the z-axis

Conical phantom single-slice helical

Spherical air pocket 8 x 2.5 mm slice helical

Helical artefacts - clinically

From "Artefacts in spiral-CT images and their relation to pitch and subject morphology", Wilting, JE and Timmer, J. EJR 9(2) 1999

Windmill artefact in consecutive slices

Teflon rod at 60° to horizontal

Pitch_x = 1.516 x 1.5 mm acquisition 5 mm recon.

Helical artefact

- Processing can compensate for helical scanning
- Reduces artefact

MSCT and dose

- CT is a high-dose exam
 - more CT studies being undertaken
 - even more exams with new MSCT apps
- Automatic exposure controls (AEC)
- Differences between single and multi-slice
 - over-beaming
 - over-ranging

37

Z-axis over-beaming

- Beams are wider than the nominal value
 due to finite size of focal spot
- Irradiated beam width ~ 3mm wider
 - e.g. 4 x 2.5 mm slices, 12.5 mm beam
- Less significant as beam width increases
 wider collimations routinely used

Nominal beam	Excess beam	Geometric Efficiency
10 mm	25%	72%
25 mm	10%	80%
40 mm	6%	95%

Penumbra

Wider beams – lower dose

- Efficiency increases with collimation (beam width)
- More coverage means thin slices at lower dose

Overranging

- To image entire volume, data is needed at both ends of scan
 - requires more rotations to acquire
- This is more significant for multi-slice, wider beams, and for short scan ranges

Data explosion!

- Scan data throughput from gantry to computer
 - Single slice, 1 second rotation : ~ 2 megabytes per second
 - 4 slice, 0.5 s rot : 16 MB/s
 - 16 slice, 0.5 s rot : 64 MB/s
 - 64 slice, 0.5 s rot : 256 MB/s
- Image production speed
 2005: ~ 64 MB/s
- Data processing burden
- Network traffic ...
- Archive issues…
- Images per exam
- Image viewing capacity?

Reporting & navigation tools

• How am I supposed to look at 800 images?

'Stack' View

" Get in the volume "

Coronal Slab VR

Axial Slab MIP

In summary

- Multislice CT scanning has progressed hugely since 1998
 - there are challenges that arise with MSCT – and have been met
 - eg ConeBeam reconstructions
- 16 and 64 slice changes CT from slice to volume scanning
 - image quality can now be routinely isotropic
 - 3D data sets readily available
 - data sets are there to be explored flexibl
- New applications still developing ... and new scanners coming

Acknowledgements

- for scanner information & images
 - GE Healthcare
 - Philips Medical
 - Siemens
 - Toshiba
 - University of Erlangen
 - Matthew Benbow, RBCH
- Thanks also due to
 - Sue, Maria and Margaret at ImPACT
 - David Platten & Nick Keat

Physics & Technology of Multislice CT

www.impactscan.org

www.pasa.nhs.uk/cep