Physics \& Technology of Multi-slice CT

James Weston ImPACT

Aims

- Some key factors about MSCT
- construction of scanners
- reconstruction techniques
- artefacts
- other factors
- Concepts and ideas
- keep it non-mathematical!

MSCT scanners

- 1991
- 1998
- 2002
- 2003
- today
- 64 sub-mm slices
- 0.4 s rotation

Clinical scanners

- Image quality and capability increasing

UKRC 2007

The 3 Fs of CT

- Faster
- Further

- Finer

UKRC 2007

Isotropic imaging

- 2D pixel in a CT image represents a 3D voxel
- Resolution is ideal when equal in all 3 dimensions
- best results with slice thickness equal to (axial) pixel size
- routine 0.5-1 mm slice thickness achieves this goal

Scanner design

-What's under the covers?

"Third generation" CT scanners

- Tube \& detectors
- rotate around patient gathering x-ray projections
- Projection data used to form slice images
- filtered back projection

Rotate - Rotate
the modern scanner design

Helical CT

- Continuous gantry rotation + continuous table feed
- Scan data traces a helical path - or 'spiral' - around patient
- data used to form axial images

Multi-slice CT scanning

- Many features in common with single slice (SSCT)
- multiple parallel detector banks along z-axis
- enables a number of projections to be acquired simultaneously

MSCT scanning: in scale

Detector banks

- Array extends in 2 directions
- xy-plane
- arc to collect many samples for each projection
- z-axis
- along the patient length
- SSCT
- z-axis coverage: one element
- MSCT
- many z-axis elements

Slices \& detectors

- Just 4 detectors reduces options for scanning
- Narrow coverage
- eg. 5 mm for $\mathrm{d}=1.25 \mathrm{~mm}$

믐 \square
믐
$4 \times d$

Slice width selection: 4 slice

- For more flexibility

AND
greater coverage need more detectors

- Can collect data from groupings of detectors
- individual detectors
- $4 \times d$
- pairs
- $4 \times 2 d$
- triples
- 4 x 3d

Slice options: real example

- GE LightSpeed
- 4 slices
- 16 detectors in z-axis

912 channels by 16 rows =
14,592 individual elements on a 55° arc.

UKRC 2007

Slice options: real example

- GE LightSpeed
- 4 slices
- 16 detectors
- Detector output combined to define data acquisition width
- Coverage up to 20 mm

\square

Adaptive arrays

- Detector elements not all same size
- e.g. Toshiba Aquillion series

More "thinnest-slice" coverage

64 slice scanners

$\longleftarrow 64 \times 0.5$
Toshiba Aquilion 64

Philips Brilliance CT64

Siemens Sensation 64

64-Slice CT: double sampling

- z-flying focal spot
- 32 detectors -> 64 data channels

- Multi-slice CT
- Multi-detector CT
- Multi-channel CT
- Multi-row CT

MSCT
MDCT
MCCT
(MRCT less common as abbreviation)

- All effectively the same thing
- Note: care when using "SSCT"
- normally used for single slice
- can sometimes refer to single source
- check the context

Design considerations

- Scan gantry
- mechanical stresses
- data \& power feed

- Tubes
- high currents
- narrow slices; fast rotations
- tube cooling
- generator response
- Detectors
- responsive
- efficient

- small
- Electronics / computers / reconstruction hardware

More challenges for MSCT

- Reconstruction
- Artefacts
- Dose efficiency
- Data management

Using helical data

- Single slice: interpolate using 2 nearest data points

Recon position

Using helical data

- Single slice: interpolate using 2 nearest data points
- Up to 8 slice MSCT: use all data within a variable 'filter width' for interpolation

Filter width

Recon position

Flexibility of reconstruction

- 'Overlapping' reconstructions
- better z-axis resolution
- better 3D imaging

contiguous

Helical, overlapping

MPR of skull from 5 mm slices

MPR of skull from 5 mm slices recon every 2.5 mm

Artefacts

- All standard (SS) CT artefacts can still occur
- ring artefact
- beam hardening
- Specific issues for MSCT
- cone beam
- helical artefacts

Cone beam artefacts

- Seen as streaks in image as number of slices increases

Thorax phantom

- Due to large cone angles and narrow slices

Courtesy: Siemens

Cone beam

- As number of slices increases, beam is more diverging, outer slices are distorted
- Negligible up to 8 slices, significant for 16 slice scanners

Cone beam artefact

- Beyond 8 slices, special reconstructions needed to avoid cone beam artefacts
- Range of techniques are used
- tilted (hyperplane, or non-orthogonal)
- 3D (Feldkamp / FDK) reconstructions

Tilted reconstruction

- ASSR techniques uses tilted reconstructions
- images back projected along optimal oblique planes
- reconstructed images then filtered to produce axial images

3D reconstruction

- Feldkamp based three dimensional reconstructions
- extension of back projection to third dimension
- requires more computing power

Effectiveness of cone beam algorithms

16-slice acquisition

Courtesy: Siemens

Helical artefacts - clinically

From "Artefacts in spiral-CT images and their relation to pitch and subject morphology", Wilting, JE and Timmer, J. EJR 9(2) 1999

Windmill artefact in consecutive slices

- Teflon rod at 60° to horizontal

Pitch $_{x}=1.5$
$16 \times 1.5 \mathrm{~mm}$ acquisition
5 mm recon.

Helical artefact

- Processing can compensate for helical scanning
- Reduces artefact

MSCT and dose

- CT is a high-dose exam
- more CT studies being undertaken
- even more exams with new MSCT apps
- Automatic exposure controls (AEC)
- Differences between single and multi-slice
- over-beaming
- over-ranging

Z-axis over-beaming

- Beams are wider than the nominal value
- due to finite size of focal spot
- Irradiated beam width $\sim 3 \mathrm{~mm}$ wider
- e.g. $4 \times 2.5 \mathrm{~mm}$ slices, 12.5 mm beam
- Less significant as beam width increases
- wider collimations routinely used

Nominal beam	Excess beam	Geometric Efficiency
10 mm	25%	72%
25 mm	10%	80%
40 mm	6%	95%

UKRC 2007

Wider beams - lower dose

- Efficiency increases with collimation (beam width)
- More coverage means thin slices at lower dose

Overranging

- To image entire volume, data is needed at both ends of scan
- requires more rotations to acquire
- This is more significant for multi-slice, wider beams, and for short scan ranges

Data explosion!

- Scan data throughput from gantry to computer
- Single slice, 1 second rotation : ~ 2 megabytes per second
- 4 slice, 0.5 s rot : $16 \mathrm{MB} / \mathrm{s}$
- 16 slice, 0.5 s rot : $64 \mathrm{MB} / \mathrm{s}$
- 64 slice, 0.5 s rot : 256 MB/s
- Image production speed
- 2005: ~ 64 MB/s
- Data processing burden
- Network traffic ...
- Archive issues...
- Images per exam
- Image viewing capacity?

Reporting \& navigation tools

- How am I supposed to look at 800 images?

‘Stack' View

Axial Slab MI P UKRC 2007
"Get in the volume"

MPR

Coronal Slab VR

3D VR
Courtesy Matthew Benbow, RBH

In summary

- Multislice CT scanning has progressed hugely since 1998
- there are challenges that arise with MSCT - and have been met
- eg ConeBeam reconstructions
- 16 and 64 slice changes CT from slice to volume scanning
- image quality can now be routinely isotropic
- 3D data sets readily available

- data sets are there to be explored flexib|
- New applications still developing
... and new scanners coming
- for scanner information \& images
- GE Healthcare
- Philips Medical
- Siemens
- Toshiba
- University of Erlangen
- Matthew Benbow, RBCH
- Thanks also due to
- Sue, Maria and Margaret at ImPACT
- David Platten \& Nick Keat

Physics \& Technology of Multislice CT

www.impactscan.org
www.pasa.nhs.uk/cep

