Image Quality and Dose Issues in MSCT

S. Edyvean St. George's Hospital London SW17 0QT

June 2007

ImPACT

Image Quality and Dose

- Image quality
 - Image noise
 - Spatial resolution
 - Contrast
 - Artefacts

• Radiation Dose

- Organ dose
- Effective dose

'Speckle and sharpness'

Image Quality and Dose Image quality Image noise Spatial resolution Contrast Artefacts What we find is that they are all in a constant battle with each other - each can only win at the expense of another Organ dose Effective dose

<text><list-item><list-item><list-item>

Scanner parameters affecting IQ and Dose

- · Beam shaping filter
- mA

RC June 2007

- Scan time
- kV
- Convolution kernel
- Detector size
- No of samples
- Image width
- Beam width
- Pitch
 C June 2007

Scanner parameters affecting IQ and Dose

- Beam shaping filter
- mA
- Scan time
- kV
- Convolution kernel
- Detector size
- No. of samples
- Image width
- Beam width
- Pitch

KRC June 2007

Noise

Scanner parameters affecting IQ and Dose

- Beam shaping filter
- mA
- Scan time
- kV
- Convolution kernel
- Detector size
- No. of samples
- Image width
- Beam width
- Pitch

RC June 2007

IQ and Dose in MSCT

- Spatial resolution (z-axis)
- Pitch

RC June 2007

- Dose issues
- Reconstruction algorithm
- What image quality do we want?

Spatial Resolution - 3D

- Scan plane (limited by pixel size)
- Z-axis (image slice width)

Picture Element (pixel)

512 pixels

Z-axis spatial resolution

- Imaged slice width
 - Influences partial volume artefacts
 - Affects contrast and noise
- In MSCT
 - Flexibility of reconstructing different slice widths
 - In helical generally (SS and MS)
 - Optimised by reconstructing overlapping slices

KRC June 2007

Z-axis spatial resolution

• Thinner slice minimises partial volume artefacts

Thick slice

Thin slice

Z-axis resolution in multi-slice

- Image width depends on detector acquisition width
 eg 4 x 5mm, will not give a 2.5 mm slice! (Use 8 x 2.5)
- May be optimised in helical
 - with closer z-axis sampling (eg z-sharp in Siemens, or certain overlapping pitches)

Z-axis resolution in multi-slice

- Image width depends on detector acquisition width
 eg 4 x 5mm, will not give a 2.5 mm slice! (Use 8 x 2.5)
- May be optimised in helical
 - with closer z-axis sampling (eg z-sharp in Siemens, or certain overlapping pitches)

Optimising z-axis spatial resolution

- Overlapping reconstructions recommended for optimum contrast and z-axis resolution
- 1/2 to 2/3^{rds} overlap recommended

Effect of pitch

- SSCT vs MSCT
 - Dose
 - Noise
 - Image slice thickness
- Artefacts

Pitch – dose Overlapping pitch – average dose increases Extended pitch – average dose lower Image: Contiguous Overlapping Extended

Pitch - single slice (increase pitch, mA const)

- Dose decreases
- Noise constant with pitch
- Two point interpolation regardless of spacing

Pitch – multislice (inc. pitch, mA const.)

Dose decreases

- Same filter width
- Image width remains the same
- Noise increases:
 - less projection data within filter width

Pitch - artefacts • Teflon (PTFE) rod in water - to simulate rib at an angle to scan plane Spiral Artefacts in MPRs Pitch 0.5 x-sectional MPR image RC June 2007

Pitch - artefacts • Spiral Artefacts in MPRs of a Tilted Teflon Rod -image-width 3mm -acquired using 4*2.5mm (Siemens Volume Zoom) Pitch 1.0 Pitch 0.5 Pitch 0.75 gradual decrease of image quality Pitch 1.25 Pitch 1.5 Pitch 1.75 images courtesy Kale RC June 2007

Dose issues in MSCT

• Beam width (overbeaming)

June 2007

RC June 2007

• Helical overscan (overranging)

Dose issues in MSCT - Beam width

Penumbra typically 3 mm for all beam widths

 lower proportion of total dose with wider beam widths

 Wider is generally better

 z-axis
 ulminum
 ulminum

8 slice

Dose issues in MSCT - Overranging Except for short scan lengths and large pitches near sensitive organs Use narrower beam widths, or axial scans

Effect of reconstruction filter

- Filter used in backprojection (convolution kernel)
 - Smooth, standard, detail, bone
 - AH30, AH40, AB50

4 slice

- FC41, FC43 etc, etc
- Used to optimise spatial resolution against noise

16 slice

Compromise depending on requirements

Image noise

- What is an appropriate level of image noise ?
 _ too low high dose
 - too high no diagnosis / missed diagnosis
- How do we find the optimum level?

KRC June 2007

Systematic addition of image noise

- Systematic addition of noise to clinical images/raw data
 Simulate mA
- Studies for a variety of clinical conditions and scanners

decreasing photons per projection \rightarrow

Image quality required for diagnosis

Image quality required for diagnosisImage quality required for body sizeImage quality required for body size</

Systematic addition of image noise

Frush et al 'Computer simulated radiation dose reduction for abdominal multidetector CT of Pediatric patients' AJR:179, November 2002
 original 120 mA
 simulated 80 mA

UKRC June 2007

<section-header><complex-block>

IQ and Dose in MSCT

- Spatial resolution (z-axis)
- Pitch

RC June 200

- MSCT dose issues
- Reconstruction algorithm
- What image quality do we want?

