Principles & implementation of automatic exposure control systems in CT

Maria Lewis ImPACT

Overview

- Why AEC in CT?
- Principles of AEC in CT
- Implementation of AEC in CT

Cruise Control

Steep hill more fuel flow

Small hill less fuel flow

Courtesy GE

- Adjust tube current (mA) for variations in patient attenuation to achieve required image quality
- The driving force behind development of AEC systems in CT has been dose reduction

• CT offers ideal opportunity for tailoring mA to changes in patient attenuation

Why AEC CT?

• The mA can be adjusted at three levels:

for overall patient size

- for varying angular attenuation

- **Benefits of AEC:** ullet
 - More uniform image quality (noise)
 - Reduced dose to less attenuating regions
 - Reduced load on x-ray tube

Images courtesy Erlangen University, Germany

Principles of AEC in CT

- Obtaining attenuation data and calculating required mA
 - patient size and z-axis
 - angular
- How much is the mA adjusted for changing patient size?
 Do we want to keep image quality constant for different sizes?
- Defining image quality requirements

 What image quality are we aiming for?

Principles of AEC: patient size & z-axis

- Acquisition of attenuation data

 SPR performed → attenuation data at each z-position
- Water equivalent diameter calculated for each level
 - max attenuation level compared to a standard size
 - allows relative mA to be calculated

Principles of AEC: patient size

• If adjusting for overall patient size mA calculated for level of maximum attenuation is used throughout the examination

Principles of AEC: patient size

• For different patient sizes the appropriate mA will be used

Principles of AEC: z-axis

- For z-axis modulation the attenuation at each level is calculated relative to maximum
- For each rotation the appropriate mA will be used

Principles of AEC: angular

- Method 1: Prospective calculation from SPR
 - x & y dimensions of ellipse calculated from information in attenuation profile
 - tube current varied sinusoidally during rotation

AP attenuation profile from SPR

V

Principles of AEC: angular

- Method 2: 'On line' modulation
 - uses attenuation data from previous rotation
 - adapts tube current to patient attenuation 'on the fly'

Attenuation information

Applied mA

UKRC June 07

Diagram adapted from Siemens

Principles of AEC: angular

- Noise in image is governed by most attenuating projections
- Reducing mA from AP direction does not change noise significantly but reduces dose

without angular mA modulation

with angular mA modulation

171mAs ~50% dose reduction

Courtesy Siemens

Principles of AEC in CT

Diagram courtesy GE

How much is the mA adjusted for changing size?

How much is the mA adjusted for changing size?

- To maintain constant image noise need constant signal to detectors
- Half value layer (HVL) of CT beam in tissue \approx 4 cm
 - Double mA for every increase of 4 cm
 - Halve mA for every decrease of 4 cm

-4 cm 34 cm: 120 mA

Ref size: 38 cm Ref mA: 240

+ 4 cm 42 cm: 480 mA

How much does mA change with attenuation?

- Do we want to maintain constant noise with changing attenuation?
 - Smaller patients require lower noise
 - With larger patients can accept more noise

How much is the mA adjusted for changing size?

UKRC June 07

Courtesy Siemens

- AEC system requires a reference level from which to adjust the mA
- This must be defined by the user

- You can have perfect adaptation of mA to patient attenuation
- Inappropriate setting of image quality can result in dose increase

- Two approaches used on AEC systems to define image quality:
 - standard deviation of CT numbers (noise level)
 - reference mA: mA for standard patient required to give appropriate image quality

Implementations of AEC in CT

Implementations of AEC in CT

	Patient size	z-axis	ar tular		
GE	Auto mA		SmartmA		
Philips	DoseRight ACS	DoseRight ZDOM	DoseRight DDOM		
Siemens	CARE Dose 4D				
Toshiba		3D			

GE: AutomA / SmartmA

- AutomA: Patient size and z-axis
- SmartmA: Angular modulation
 - can be selected additionally*
 - uses prospective attenuation from single Scout View
- mA adjusted to maintain ~ constant noise

- Specify a 'noise index' (NI)
 - NI defined as s.d. of CT numbers in water phantom with 'standard' algorithm
 - Set min & max mA
- Patient s.d. ~ matches noise index for standard algorithm

Scout view

mA calculated to match s.d. for 'standard' alg.

s.d.≈ 10.0 in patient with 'standard' algorithm

s.d. = 10.0 in water phantom for 'standard' algorithm

• Different algorithms: patient s.d. will not match the noise index

Noise index = 10.0

Scout view

mA for patient calculated to match s.d. for 'standard' alg.

s.d.≈ 40.0 in patient with 'bone' algorithm

- Increasing Noise Index (NI):
 - increases noise
 - decreases dose

Toshiba: ^{SURE}Exposure 3D

SURE Exposure 3D

UKRC

- incorporates all three levels of modulation
- angular (x-y) modulation: ON/OFF
 - uses prospective attenuation from Scanogram

10.00000

- Two Scanograms required
 - use same kV as for scan
- mA adjusted to maintain ~constant noise

	Sure Exp. 3D Set						
	Name	New					
	Quality 2	Delete	SD 12.00				
	Quality 1 Quality 2 Quality 3 Quality 4		MAX 500 mA	MIN 40 mA			
Ju	Quit	Save	ON				

Toshiba: defining image quality requirements

- Specify s.d. level (or 'image quality level)
 - patient mA calculated to achieve this noise level at any scan parameter settings
- Set min & max mA

Siemens: CARE Dose 4D

 CARE Dose 4D: all three levels of AEC applied

some exceptions

e.g.adult head protocols: z-axis only

- Angular modulation uses 'on-line' attenuation data
- Use same kV for Topogram as for scan

Siemens: CARE Dose 4D

• Adapting mA for attenuation variation

Siemens: defining image quality requirements

- Specify 'Quality reference mAs' in each protocol
 - effective mAs for required image quality in standard patient
- Effective mAs is determined only by 'Quality reference mAs' and patient size
- Independent of scan parameter settings

Philips: DoseRight

- ACS: Automatic Current Selector

 patient size
- Z-DOM: Z-axis modulation
 - must be used initially with ACS
- D-DOM: Angular modulation
 - D-DOM can be used independently or with ACS
 - uses 'on-line' modulation
- D-DOM & Z-DOM cannot be implemented simultaneously
- Aims to keep image quality fairly constant with varying attenuation

Philips: defining image quality requirements

A few practical tips....

 To obtain correct attenuation data from SPR always centre the patient carefully

Patient is positioned in the isocenter – optimal dose and image quality

Patient is positioned too high - increased mAs

Patient is positioned too low – reduced mAs and increased noise

Courtesy Siemens

A few practical tips....

- Ensure nothing but the patient is in the beam
- Always check CTDI_{vol} info
- Check system is not over-ranging may not be able to achieve the range of mA values required

Conclusions

- Manufacturers differ in their approach to AEC
- Know your AEC system: read manual, talk to applications specialist
- AEC systems can increase as well as decrease dose
- Define image quality requirements carefully for each protocol
- Review image quality and dose continuously

Acknowledgements

- The manufacturers for providing information & material; in particular:
 - Thomas Toth & Sandie Jewell, GE
 - Iris Sabo-Napadensky & Derek Tarrant, Philips
 - Christoph Suess & Susie Guthrie, Siemens
 - Henk de Vries & Craig Hagenmaier, Toshiba
- The physicists & radiographers who gave me their time & time on their scanners; in particular:
 - Grace Keltz, St. George's Hospital
 - Claire Skinner, Royal Free Hospital
 - CT department, Royal National Orthopaedic Hospital
 - Lynn Martinez & Nina Arcuri, Royal Mardsen Hospital
 - Trupti Patel, Harefield Hospital
- Sue & Jim, my colleagues at ImPACT, for helpful comments